DBpedia Navigator

Jens Lehmann and Sebastian Knappe

Universitét Leipzig, Department of Computer Science, Johannisgasse 26,
D-04103 Leipzig, Germany,
lehmann@informatik.uni-leipzig.de, sebastian_knappe@gmx.de

Abstract A vision of the Semantic Web is to bring the benefits of se-
mantic technologies to a wide audience. Large knowledge bases, such as
DBpedia, YAGO, and others have emerged and are freely available as
Linked Data and SPARQL endpoints. In this article, we introduce the
application DBpedia Navigator, which allows users to navigate, search,
and browse within DBpedia and the data sets interlinked with DBpedia.
In particular, we present a novel feature called navigation suggestions.
Based on the last instances viewed in DBpedia Navigator, the user gets
suggestions about related instances he may be interested in. Those sug-
gestions make full use of the semantics of the underlying knowledge base
and are provided by a supervised Machine Learning algorithm for OWL,
which we made available as open source in the DL-Learner project.

1 Introduction

The vision of the Semantic Web is to make use of semantic representations on
the largest possible scale - the Web. We currently experience that Semantic
Web technologies are gaining momentum and large knowledge bases such as
DBpedia[l], YAGOI6], and others are freely available. These knowledge bases
are based on semantic knowledge representation standards like RDF and OWL.
They describe millions of objects, and contain hundred thousands of properties
as well as classes.

Due to their sheer size, users of large knowledge bases, however, are facing the
problem, that they can hardly know which identifiers are used and available. In
most cases, end users will not be able to express their queries in a structured form
at all, but they often have a very precise imagination what kind of results they
would like to retrieve. A historian, for example, searching for ancient Greek law
philosophers influenced by Plato in DBpedia can easily name some examples and
if presented a selection of prospective results he will be able to quickly identify
false results. However, he might not be able to efficiently construct a formal
query adhering to the large DBpedia knowledge base a priori.

The DBpedia Navigator is an application, which tries to overcome this prob-
lem and facilitate browsing and querying large knowledge bases. It was written
as an interface to DBpedia and the data sets interlinked with it, but can in
principle be configured to be used in conjunction with arbitrary large knowledge
bases available as SPARQL endpoints. It tackles the issue mentioned above by

using Machine Learning techniques, which offer the user navigation suggestions.
Furthermore, it provides many other means to browse through the DBpedia
knowledge base taking the underlying semantics into account.

The paper is structured as follows: There are two main sections. Section
describes the DBpedia Navigator user interface and the structure as well as
features of the application. Section [3| describes the working of the navigation
suggestion component, which is based on the DL—LearnerEl Machine Learning
framework. Finally, in Section] we give concluding remarks and pointers to
future work.

2 The DBpedia Navigator User Interface

DBpedia Navigator is available at http://navigator.dbpedia.org. In brief,
it is a user interface for browsing, searching, and navigating within DBpedia.
While the application will later be suitable for end users, it is currently in Alpha
status, i.e. it is availabe for testing purposes, but is not yet sufficiently stable and
complete to be used productively. In the following, we present its user interface
structure.

Navigation Suggestions =

ou could also be interested in articles matching these descriptions.
an administrative district (Accuracy: 100%)

S Y. .
ity (¢ 100%)
DBEpéadia Naviaator e

Server Call... X

‘Search DBpedia New York City search relevant X
New'York Short Description o i
e Newvor iy il Tne CiyofNew Yo i e agest ol nthe nied Sttec it fo -
mettopolitan area ranking among the largest urban areas inthe world. Located on the country's east : 2
Coast inNow York ite was oucad a6 a ormmerca ading post by ihe DUt In 1625, ana has el o x
been the largest ciy in the United States since 17801 1 also served as he capial ofthe United States
Best Search Restts from 1765 Ul 1780, Locate o one ofi worls naturlatuors, New Yorkis oneofte words
© Newvarcy major centers of commerce and inance. New York also exerts lobal inuence in media, education,
Cntriainment are, fashlon and adverising. The iy s aisa a malorcenter o mtematonal atais
lew York hosting the headguarters of the United Nations. New Yark City comprises five boroughs: The Branx, Articies LastViewed
3 Newyork fimes Brookiyn, Manhattan, QUeens, and Staten Island, ea chwith the five counties of Brony, Kings, New York, 8 Leipzig
4 The New York Times Quaens, and Richmand respaciively, With over 8.2 million residents witin an area of, New York City s i X Newvork City
5. New vork Yankses; the mnstdense\v nopulated major city in the United States. Many of the city's neighborhoods and
6 New Yok Giarts landmarks are known around the world. The Statue of Liberty greeted millions of immigrants as they
7. New vork Rangers came to America in the late 19th and early 201h centuries. Wall Street,in Lower Mannattan, has been a_ e s Toviensd
8 New York University dominant globa fnancialcenter since Warld War I and is oms o th New w York Stock Exchange. The lasses Last Viewe
9. New York Wets 10 sveralofhe fallest buldings in he world,including the Ermpire State Buicing | 48 A cityin saony
10. Buffalo, New York andmvmeﬂvmewnmwws afthe World Trade Center. New York is the bithplace of many cuftural

DBpedia Navigator is powersd by
er

DL-Leam GreatiAhite Way or The Realto. n 2005, nearly 170 languages were spoken in ha ciy and 365 o
DBpedia Bep N waC b e Unad St W e 24 heut ey o comeian g oo and pecple, Now York s sometimes
OpenLink Virtuosa called "The City That Never Sleeps", Gotham, and the "Big Apple."
and implementzd by Jens Lehmann
and Sebastian Knappe atthe AKSW W view Wikipedia article, W- view DB pedia resource description, " view photo collection

research group (University of Leipzig).
o) oww J1Vie)seanat |
Same as.

« hifpisws geonames.orgf5128581/
« httiimpii defyagoiresourceiew_York_City

YAGO Classes

« cityinthe United States — search Instances — show Class in Hierarchy
« cityIn New Yark — search Instances — show Class in Hierarchy
= cityInthe United Stales — search Instances — show Class in Hierarchy
SHIEL . ssarh nstances stow Oiss n Hisrarty
+ capital ofthe United Staies — search Instances — show Class in Hisrarchy
+ ehlement established in 1625~ scarch instances — show Glacs nHierary
« area of the Urited Stales — search Instances — shaw Class in Hierarchy
« ecanomy by city — search Instances — show Class in Hierarchy
o vilage — search Instances — show Class in Hierarchy

Map of the location

-m:
.

Figure 1. The DBpedia Navigator GUI

!nttp://dl-learner.org

http://navigator.dbpedia.org
http://dl-learner.org

2.1 Left Sidebar

You can search for an article by entering its name into the search field, which
is located on the left side (see Figure . We use the phrase article, because
the displayed information is to a large extend derived from Wikipedia articles.
Contrary to a Wikipedia display of an article, we view an article as a collection of
content connected to an object. There are two ways to search an article: Hitting
the Article button performs a direct article search, i.e. looks for a perfect
match. Using the Search button performs a search for articles which have labels
similar to the search string. They are presented in a search result view. DBpedia
Navigator keeps the results of your latest search on the left sidebar even after
you selected a search result.

2.2 Center Section

All views are shown in the center box. There are three kinds of views: article
view, search result view, and a class view.

Article View For the article view the label of the current object is shown in the
upper left corner of the box. The article itself consists of several parts, which are
separated by a dotted horizontal line. The first part shows a short description
of the object with an associated picture. Links to the corresponding Wikipedia
article, the DBpedia resource description and a Flickr photo collection are given,
which are opened in small windows, so that you can look at the article and the
opened link at the same time.

The second part consists of links to interesting interlinked objects. Below
those are the YAGO classes of the object. Using the displayed links, you can
search for instances of these classes, which takes you to a search result view of
the instances, or alternatively you can view information about the class itself.
The fourth part is a content-specific section depending on the kind of viewed
object. If the object is a location, a Google Map is shown, if it is a person, some
characteristics of that person are displayed etc.

The next part of the article view is a collection of interesting information,
which was not yet consumed by any of the parts above (interlinked data, class
hierarchy, short abstract etc.) and is not ignored by a configurable object filter
(e.g. we filtered out SKOS properties since we use YAGO). They are displayed
in a style similar to typical linked data browser. If there are more than a config-
urable amount (default: 3) of objects associated with a property, only the first
are shown. The remaining objects can be made visible via a show button. This
feature makes the article display more compact. We are aware that large fractions
of the displayed information in this part is not suitable for direct consumption
by end users, because DBpedia - while being an immensely useful resource - does
(can) not reach the quality of a maintained ontology (yet).

Shown articles are automatically added to the list of search relevant articles
in the upper box on the right sidebar. These instances are used to generate
navigation suggestions (see Section .

Searchresult for "Bank"

wissuer of the United

kingdom COMPANY.

in 1670 cormpany listed on the Frankfut Stk

erch. Show hest 10] 26501 78100

10, Royal Bark of Seolland

Figure 2. Display of search result
along with a tag cloud to restrict re-
sults.

Class: city

Father classes
municipality (Municipality1 08626263) v

Instances Class

Current class
eity (Cty108524735)

Instances

child classes
city in the Faroe Islands (AbandonedCitiesinTheFaroelslands) v

Instances Class

Figure 3. The class view contains
parents, children, and instances of a
class.

Search Result View The search result view is shown whenever you search for
articles, by label, by class or by class description. If you search for articles using
a label a tag cloud is displayed, showing the classes, the found articles belong to,
with the option to filter the articles by these classes. What follows regardless of
what kind of search you performed is a list of links to articles on several pages,
with the option to show a variable number of results. The results are ordered
according to a pagerank, every article has. Therefore you always see the most
relevant articles, matching a certain criteria.

Class View The class view is a view of a class in the context of the class hierarchy,
that means you see superclasses and subclasses of the searched or selected class.
You can select classes in this view and query their instances. This allows you
to browse not only via articles but also via the class hierarchy, enabling more
complex and sophisticated use of the application.

2.3 Right Sidebar

The right side bar consists of up to four elements. On the upper right side there
are two boxes with lists of search relevant and not relevant articles. You can move
articles from “relevant” to “not relevant” or the other way around by simply
clicking on the plus or minus behind the articles. The cross removes articles from
these boxes. The lists are important when generating navigation suggestions,
since they correspond to positive and negative examples of the learning problem
explained later on. In short, those navigation links are suggested, which cover all
relevant and none of the irrelevant articles. Below the relevance boxes the last
shown articles and classes are displayed. To disburden the SPARQL endpoint,
they are kept in a cache.

2.4 Navigation Suggestions

The navigation suggestions are shown above the articles. They are links, that
call a function to show instances of the class, these links are representing. The

classdefinition is not shown in description logic but in a human readable way.
For every suggestion the accuracy is noted, indicating how good a class covers
the given examples. On the right side is an indication whenever the server is
called and you can cancel a request if it takes too long.

Havigation Suggestions

“ou could alzo be interested in articles matching these descriptions:
an actor (accuracy: 100%)

an alumnus (accuracy: 100%)

an administrative district (accuracy: 100%)

a city in Saxony (accuracy: 100%)

2.5 REST Interface

The application has a REST Interface, which allows to map the current state of
the application to an URL. The URL is shown below the article and is updated
everytime you perform an action. The interface has the following syntax:

URL ::= ’http://’ host ’/’ function ’/’

label [’7?7’ parameters]

host ::= (the host, the navigator is installed on)

function ::= ’showArticle’ | ’search’ | ’showClass’ |
’searchInstances’ | ’searchConceptlInstances’

label ::= (some label of the article, the searchphrase or the class)
parameters ::= parameter [’&’ parameter]

parameter = (’positives=’ article+) | (’negatives=’ article+) |
(’concept=’ concept)

article si= [uri ’]°

uri ::= (the URI of the article)

concept (class description)

3 Generating Navigation Suggestions

3.1 Overview of the underlying Machine Learning Algorithm

In this section we will briefly describe the learning problem in OWL. We assume
familiarity with OWL or Description Logics (DLs) [2]. The process of learning
in logics, i.e. finding logical explanations for given data, is also called inductive
reasoning. The background knowledge is a knowledge base K. The goal is to
find a definition for a class we want to call Target. Hence the examples are of
the form Target(a) where a is an individual. We are then looking for a class
definition of the form Target = C' such that we can extend our knowledge base

by this definition. Let K’ = KU{Target = C} be this extended knowledge base.
Then we want that the positive examples follow from it, i.e. K’ = ET, and the
negative examples should not to follow, i.e. K’ £ E~.

In inductive learning, a generate and test strategy is common. Several class
descriptionﬂ are tested during a learning process, each of which is evaluated
using an OWL reasoner. Smart algorithms will take the results of those evalua-
tions into account to suggest further promising descriptions. This way, learning
can be seen as a search process in the space of descriptions. A natural idea is to
impose an ordering on this search space (the set of all class descriptions) and use
operators to traverse it. This strategy is well-known in ILP, where refinement
operators are widely used to find hypotheses. Formally, if S be the set of OWL
class descriptions, we can consider the quasi-ordered space (S,C) (C denotes
subsumption). A downward (upward) refinement operator p is a mapping from
S to 29, such that for any C € S we have that C’ € p(C) implies C' C C
(C CC"). ' is called a specialisation (generalisation) of C.

We used this idea to build a top-down refinement operator based algorithm.
This means that the first description, which will be tested is the most general
description (owl:Thing, denoted by T in DL syntax), which is then mapped to
a set of more special descriptions by means of a downward refinement operator.
Naturally, the refinement operator can be applied to the obtained descriptions
again, thereby spanning up a search tree. The search tree can be pruned when we
reach an incomplete description, i.e. a description which does not cover all the
positive examples. This can be done, because the downward refinement operator
guarantees that all refinements of this description will also not cover all positive
examples and therefore cannot be solutions of the learning problem. One example
for a path in a search tree spanned up by a downward refinement operator is:

T ~» Person ~ Person participatesIn.Event

~» Person[lparticipatesIn.Conference

The heart of such a learning strategy is to define a suitable refinement operator
and an appropriate search heuristics for deciding which nodes in the search tree
should be expanded. The refinement operator in the considered algorithm can be
found in [5] and is build on solid theoretical foundations [4]. It has been shown
to be the best achievable operator with respect to a set of properties (not further
described here), which are used to assess the quality of refinement operators.

3.2 Scaling the Algorithm to Very Large Knowledge Bases

Since the algorithm depends on reasoning and OWL reasoners usually are not
able to handle very large knowledge bases, such as DBpedia, we first perform
a knowledge fragment selection. The extraction works by executing SPARQL
queries, which obtain knowledge related to the example instances. The fragment

2 see http://www.w3.org/TR/owl-ref/#ClassDescription for a definition of OWL
class description

http://www.w3.org/TR/owl-ref/#ClassDescription

fragment

positive & negative selection
examples |

examples + learning OWL class
e — P
knowledge base T R descriptions
fragment P \
’ 1 A
I
|
I

v
v
\

I
I
|
I
| /

7

i \

' ! \

> ! N

large knowledge base OWL reasoner ' rafinament operator

(accessed via Linked Data or

SPARQL Endpoint)]

Figure 4. Process Illustration: In a first step, a fragment is selected based on
instances from a knowledge source and in a second step the learning process is
started on this fragment and the given examples.

~ heuristics

is much smaller than the original knowledge base and makes reasoning feasi-
ble. The extraction procedure itself is described at [3] and will not be presented
in detail here. In general, the extraction procedure starts with the example in-
stances (relevant and irrelevant articles in our case) and finds related instances
up to some recursion depth. It then extracts important fractions of schema in-
formation. The extraction also handles OWL DL conformance issues e.g. proper
typing of resources to ensure that reasoners can properly process the fragment.

3.3 Adapting the Machine Learning Algorithm

The above described learning algorithm [5] was adapted for generating navi-
gation suggestions in DBpedia. First the positive and negative examples are
combined to sets of examples, because generating descriptions with examples
from very different areas results in very general descriptions, that are of no use
as navigation suggestions. For instance, using a location and a person usually
do not have much in common. Therefore, the classes and the super classes of ex-
ample instances are examined, such that if two examples share a class or super
class, they are in the same example set. Every example set forms one learn-
ing problem, that is solved seperatly. Finally, the resulting suggestions for each
learning problem are merged.

If a learning problem only consists of positive examples (the user did not
choose any articles to be excluded explicitly), negatives are generated. Therefore,
instances of classes related to the examples as well as instances related via object
properties are randomly picked as negative examples. They help the learning al-
gorithm to determine, which characteristics of the examples are outstanding, e.g.
it is probably not interesting that Alber Einstein has some birthdate, but it is
interesting that this person won an important prize (the noble prize). Further-
more, when collecting the necessary background knowledge, certain filters are
applied, that assure adequate results, e.g. we filter out the SKOS relationships
in DBpedia, but keep the YAGO hierarchy, because it is better suited for our
approach. We also perform methods to ensure that the extracted fragment is in
OWL DL, which we do not want to describe in detail here due to lack of space.

Finally, the learned class descriptions are converted to natural language (in
order to be readable by end users). URIs are replaced by labels and the class
description constructors are replaced by human readable strings. We configured
the algorithm to use only a sublanguage of OWL by exluding negation and
universal quantification. This allows for a simple natural language conversion.

4 Conclusions and Future Work

We presented a user interface for browsing and searching in DBpedia and inter-
linked data sets. In particular, we introduced navigation suggestions as a means
to support the user, which heavily relies on the semantics of underlying data. We
also believe that this is the first time that supervised symbolic Machine Learning
is routinely used in an application targeted for end users.

Being a prototype, there are a few areas, where DBpedia Navigator can
be improved: 1. Large parts of the schema relevant for the learning algorithm
(class/property hierarchy, domain/ranges of properties, disjoint classes) could
be kept in memory, while the fragment selection algorithm is modified to work
on the SPARQL endpoint only for those resources not in memory. Currently, the
relevant schema portion is recreated on each request by querying the SPARQL
endpoint, which causes considerable delays until the user can view the navigation
suggestions. 2. The learning algorithm, which is currently suitable for learning a
large fraction of available OWL constructs can be tailored to a simpler language,
specifically extensions of EL. Apart from that, as usual, work needs to be done
to transform the prototype into an end user application.

References

1. Soren Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary G. Ives. DBpedia: A nucleus for a web of open data. In ISWC/ASWC
(2007), LNCS (4825), pages 722-735. Springer, 2007.

2. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Pe-
ter F. Patel-Schneider, editors. The Description Logic Handbook: Theory, Imple-
mentation, and Applications. Cambridge University Press, 2003.

3. Sebastian Hellmann, Jens Lehmann, and Séren Auer. Learning of owl class descrip-
tions on very large knowledge bases. In 7th International Semantic Web Conference
(ISWC), 2008.

4. Jens Lehmann and Pascal Hitzler. Foundations of refinement operators for descrip-
tion logics. In 17th Int. Conf. on Inductive Logic Programming (ILP), 2007.

5. Jens Lehmann and Pascal Hitzler. A refinement operator based learning algorithm
for the ALC description logic. In Proceedings of the 17th International Conference
on Inductive Logic Programming (ILP), volume 4894 of Lecture Notes in Computer
Science, pages 147-160. Springer, 2008.

6. Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of seman-
tic knowledge. In Carey L. Williamson, Mary Ellen Zurko, Peter F. Patel-Schneider,
and Prashant J. Shenoy, editors, WWW, pages 697-706. ACM, 2007.

	DBpedia Navigator
	Jens Lehmann, Sebastian Knappe

